Solving Large Imperfect Information Games Using CFR+

نویسنده

  • Oskari Tammelin
چکیده

Counterfactual Regret Minimization and variants (e.g. Public Chance Sampling CFR and Pure CFR) have been known as the best approaches for creating approximate Nash equilibrium solutions for imperfect information games such as poker. This paper introduces CFR, a new algorithm that typically outperforms the previously known algorithms by an order of magnitude or more in terms of computation time while also potentially requiring less memory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CFR-D: Solving Imperfect Information Games Using Decomposition

One of the significant advantages in problems with perfect information, like search or games like checkers, is that they can be decomposed into independent pieces. In contrast, problems with imperfect information, like market modeling or games like poker, are treated as a single decomposable whole. Handling the game as a single unit places a much stricter limit on the size of solvable imperfect...

متن کامل

Reduced Space and Faster Convergence in Imperfect-Information Games via Regret-Based Pruning

Counterfactual Regret Minimization (CFR) is the most popular iterative algorithm for solving zero-sum imperfect-information games. Regret-Based Pruning (RBP) is an improvement that allows poorly-performing actions to be temporarily pruned, thus speeding up CFR. We introduce Total RBP, a new form of RBP that reduces the space requirements of CFR as actions are pruned. We prove that in zero-sum g...

متن کامل

Solving Imperfect Information Games Using Decomposition

Decomposition, i.e., independently analyzing possible subgames, has proven to be an essential principle for effective decision-making in perfect information games. However, in imperfect information games, decomposition has proven to be problematic. To date, all proposed techniques for decomposition in imperfect information games have abandoned theoretical guarantees. This work presents the firs...

متن کامل

Reduced Space and Faster Convergence in Imperfect-Information Games via Pruning

Iterative algorithms such as Counterfactual Regret Minimization (CFR) are the most popular way to solve large zero-sum imperfect-information games. In this paper we introduce Best-Response Pruning (BRP), an improvement to iterative algorithms such as CFR that allows poorly-performing actions to be temporarily pruned. We prove that when using CFR in zero-sum games, adding BRP will asymptotically...

متن کامل

Monte Carlo Sampling for Regret Minimization in Extensive Games

Sequential decision-making with multiple agents and imperfect information is commonly modeled as an extensive game. One efficient method for computing Nash equilibria in large, zero-sum, imperfect information games is counterfactual regret minimization (CFR). In the domain of poker, CFR has proven effective, particularly when using a domain-specific augmentation involving chance outcome samplin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1407.5042  شماره 

صفحات  -

تاریخ انتشار 2014